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Abstract 

A full classification is given of the Bravais classes of 
lattices of symmetry groups of incommensurate crystal 
phases with an internal (additional) dimensionality d 
lower than four. These Bravais classes form the basis 
for the derivation of superspace groups needed for the 
symmetry classification of incommensurate crystal 
phases. By means of examples it is indicated how the 
information contained in the various tables can be 
extracted and used, for example, for the derivation of 
superspace groups. 

I. Introduction 

An incommensurate crystal is characterized by the 
occurrence of at least four periodicities, three of which 
describe a usual crystal structure, whereas the addition- 
al ones are incommensurate with the former ones. 
Because of the incommensurability there is no three- 
dimensional lattice translation symmetry. It has been 
shown, however, that nevertheless the appropriate 
symmetry group for such a case is a crystallographic 
space group, not in three but in 3 + d dimensions (de 

0108-7673/83/050658-09501.50 

Wolff, 1974, 1977; Janner & Janssen, 1977), a 
so-called superspace group. The additional dimension 
can be interpreted as an internal degree of freedom. 

For the simplest case of one additional dimension, 
the inequivalent (3 + 1)-dimensional superspace groups 
have been tabulated together with the corresponding 
classes of Bravais lattices (de Wolff, Janssen & Janner, 
1981). However, there are also examples of crystal 
phases with an internal dimensionality higher than one. 
Since it has been shown that in general (3 + d)- 
dimensional superspace groups are useful for the 
classification and for the structure analysis of three- 
dimensional crystal phases (e.g. Yamamoto, 1982), it is 
of relevance to investigate these higher-dimensional 
superspace groups, also. The number of superspace 
groups, however, increases rapidly with increasing 
dimension and easily exceeds the number of known 
incommensurate crystal phases. Therefore, it does not 
seem to make sense to work out a complete list. 

The number of Bravais classes on the other hand is 
much more restricted. Moreover, they form the basis 
for the determination of superspace groups and provide 
a useful framework for their classification. In the 
present paper we discuss the general theory and give a 
derivation of a complete list of classes with internal 
dimension up to three. 
© 1983 International Union of Crystallography 
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This list covers all cases of incommensurate crystal 
phases known so far. In a subsequent paper (Janner, 
Janssen & de Wolff, 1983b) we show how, on the basis 
of the present list and knowing the geometrical 
arrangement of the diffraction pattern of a given 
crystal, one can easily identify the Bravais class of that 
crystal. 

Crystallographers not interested to know how one 
gets (for a given internal dimension) all the Bravais 
classes may skip most of the present article and learn in 
the paper mentioned above how to use the tables for 
practical cases. 

Three is not the maximal internal dimension which 
can occur in incommensurate crystals. In phase 
transitions leading to a modulated crystal one often 
sees the condensation of elementary excitations 
(phonons). One can distinguish cases where these are 
independent and others where they are related by 
symmetry. In the latter case the wave vectors form a 
so-called 'star'. Bravais classes associated with a single 
star of additional (satellite) wave vectors are called 
elementary Bravais classes (EBC's). The more general 
case is then obtained by superposition of stars. The 
concept of EBC plays a role in the present paper, but 
EBC's are discussed in more detail and derived in 
another paper (Janner, Janssen & de Wolff, 1983a). 
The reason is that (most of) the EBC's allow another 
type of derivation based on Wyckoff positions of 
centrosymmetric symmorphic space groups. They can 
thus be read off from International Tables for  X-ray 
Crystallography (1969) (referred to as IT). 

Coming back to the present paper we recall that the 
classification of superspace groups is based on the 
arithmetic crystal classes. By means of a number of 
examples we indicate how one can derive such crystal 
classes from the Bravais classes, and moreover illus- 
trate the determination of superspace groups. In the 
situation where enough structural information on a 
given crystal phase is available, by looking at those 
examples and on the basis of the tables presented here, 
it should be possible to identify the superspace group 
describing the symmetry of that crystal. 

II. Lattice symmetry of  incommensurate crystal 
phases 

The reflections in X-ray or neutron scattering from an 
incommensurate crystal phase can be labeled by a set 
of integers (indices), but need for their labeling more 
than three indices. An arbitrary wave vector describing 
such a reflection can be written as, for example, 

k = ha* + kb* + l c* + m q*, (1) 

or in a more compact form, and more generally, as 

3 d 

k =  ~ hia ~ + ~ mjq~. (2) 
l= l  j = l  

Here the vectors q*, ..., q~, which are called 
modulation wave vectors, are chosen in such a way 
that the vectors a*, ..., q~ are rationally independent 
and that the reflections with mj = 0 (all j)  are the 
so-called main reflections; the other ones being the 
corresponding satellites. The main reflections belong to 
a three-dimensional reciprocal lattice A* spanned by 
a*, a*, a~'. The set of all vectors of the form (2) with 
arbitrary integers hi, mj is here denoted by M*. 

Because the vectors a*, a*, a~' form a basis for the 
three-dimensional real space, called external or posi- 
tional and denoted by V e, the modulation wave vectors 
q~' can be expressed as a linear combination of them: 

3 

q~ ' :  Y o'jta ~. (3) 
1=1 

The condition of rational independence means that in 
each row of the d × 3-dimensional matrix e there is at 
least one irrational entry, or even stronger: in every 
linear combination with integral coefficients of the rows 
of e there is such an irrational entry. 

Let us denote the (holohedral) point group of A* by 
K A. If A is the direct lattice corresponding to A*, i.e. 
the lattice generated by al, a2, a3 with 

a,. a~' = Ju, (4) 

then K A is also the point group of A. 
Now we consider the group K of all elements of K A 

which leave M* invariant. Because K is a subgroup of 
K A, the lattice A* is left invariant by any element R of 
K: the transformed vector R a~' is a linear combination 
of the basis vectors a*, a*, a~'. Thus 

3 

Ra't = Y ctj a~', i = 1, 2, 3. (5) 
j = l  

The integral coefficients % form a 3 x 3-dimensional 
matrix that we shall denote by FE(R-1). We use here 
FE(R -1) rather than FE(R) because the transformation 
acts in reciprocal space. In this way agreement is 
obtained with Janner & Janssen (1979). The vectors q~' 
transform under R of K into vectors of the form (2), i.e. 

3 d 

R ~ =  ~ FM(R-1)jIa~ + ~. l~l(R-1)jkq~, 
1=1 k=l 

j =  1, ..., d. (6) 

The integral coefficients FM(R-1)j~ and Fz(R-1)jk form 
matrices of dimension d x 3 and d x d, respectively. 
The latter, because of the condition of rational 
independence, are invertible and they form a finite 
group. According to a theorem of algebra, this group is 
equivalent to a group of orthogonal matrices. In other 
words, in the d-dimensional real space R d there are 
orthogonal transformations R r and a basis b*, ..., b~ 
(in general not orthogonal) such that 

d 
R z b ~ =  Z F t ( R - 1 ) j k b ~  • (7)  

k=l  
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We call this Euclidean space the internal space and 
denote it by V v The lattice spanned by b*, ..., b~ is left 
invariant by Rt (one for each R of K) and the same is 
true for the lattice spanned by the dual basis b p . . . ,  bd. 

One can now consider the direct sum space V s of V e 
and V~. In this space (which we take to be also 
Euclidean) there exists a lattice 27* spanned by 3 + d 
vectors: 

a* = (a*,0), i =  1, 2, 3 (8) 

a*+j= (q~,b~), j =  1, ..., d. 

Here vectors in ordinary three-dimensional space and 
in internal space are denoted by a bold face symbol. As 
a consequence of (5-7) the lattice 27* is left invariant by 
a group of orthogonal transformations such that a* is 
transformed into 

3+d 
a~* = • r(R-1)~ya * (R in K), (9) 

i=1 
where the matrix F(R) is 

F~(R) o 
F(R)=FM(R ) I t (R ). (10) 

The dual lattice 27 in the (3 + d)-dimensional space is 
spanned by 

a i = (a i, - Aal), i = 1, 2, 3, (1 1) 

a3+j=(O,by), j =  1 , . . . , d ,  

where the components of a i in the internal space are 
given by 

d 
Aai = Z aji bj. (12) 

j=l 

The matrix a in (12) is exactly the same as that 
appearing in (3). As we have discussed in Janner & 
Janssen (1977), the internal space IIi corresponds to d 
degrees of freedom, which can be interpreted as the 
phases of the modulation in the case of a displacively 
modulated crystal. As we have shown in Janner & 
Janssen (1980), the symmetry of incommensurate 
crystal phases can be described by superspace groups 
(Janner & Janssen, 1979), which are (3 + d)- 
dimensional space groups with a lattice spanned by 
vectors as in (1 1) and point groups K constructed as 
indicated above. 

This is the reason why crystallographic concepts can 
be applied to incommensurate crystal phases as well, 
and why it makes sense to study the Bravais classes of 
(3 + d)-dimensional lattices. 

III. Classes of Bravais lattices 

The lattice 27 is completely determined by the basis 
vectors a*, a*, a*, q*, ...,  a3 of M* (up to the freedom 
one has in the choice of the basis b I, ... ,  bd). 

Equivalently it is determined by a* (i = 1, 2, 3) and the 
matrix e. Here we want to discuss the question when 
two lattices 27 and 27' can be called equivalent. 

For given basis a~', q~' (i = 1, 2, 3 ; j  = 1, . . . ,  d) an 
element R of K gives rise to an orthogonal trans- 
formation which has the form F ( R ) o f  (10)with respect 
to the basis (8). Moreover, if R l and R 2 are elements of 
K then 

F ( R I R 2 ) =  F(R) F(R2), (13) 

i.e. Fis a group homomorphism. If we restrict ourselves 
to orthogonal transformations (RE,R I) in V s leaving 
both subspaces V E and V~ invariant but otherwise 
arbitrary, then every transformation leaving 2:* (or 27) 
invariant is of the form (10). This can be seen as 
follows. Suppose (1,Rt) leaves X* invariant. Take an 
element k = (kE,k ~) from 2J*, where k E is of the form 
(2) and k~ = ~ j  mjb~. Then (kE, Rlk;) is an element of 
X* and k E belongs to M*. Because of the condition of 
rational independence, there is exactly one element 
from 27* for each element of M*, and thus one single k~ 
for each k E. This means that R l k i = k v Because k E, 
and accordingly kt are arbitrary, this implies that 
R / =  1. In other words, Fis even an isomorphism: there 
is exactly one F(R) for each R in K and if (Rr.,R~) 
leaves S invariant then R E belongs to K. One can call K 
the (holohedral) point group of 27* (and of 27). The 
restriction to pairs (Rv.,R~) means that we only 
consider transformations which map vectors of 27* 
corresponding to main reflections to similar ones, and 
that the point group F(K) consisting of matrices F(R) 
is 3 + d reducible, i.e. there is a basis in V s such that 
these matrices are of the form (10) with F u = 0. We do 
not consider as symmetry transformations the so-called 
irreducible ones, which mix internal and external 
coordinates. At present no crystals are known where 
such irreducible symmetries in dimensions higher than 
three can be applied. 

Just as in ordinary three-dimensional crystallog- 
raphy, we call two lattices 27 and X' of the same 
Bravais class if there are (primitive) bases such that the 
corresponding holohedral point groups are represented 
by the same group of matrices. The only difference with 
ordinary crystallography is that the class of allowed 
basis transformations is in the present case restricted to 
those leaving the reduced matrix form (10) invariant. 

Suppose the basis a*, q~' of M* gives rise to the 
group of matrices F(R) as above. A new basis of M* 
keeping the integral indices labeling can then be 
expressed in terms of integral linear combination of the 
original basis elements: 

3 
C~'= Z Sija~, i= 1,2,3, (14) 

j=l 

d 3 
r ~ =  Z Tjk qTff¢ + Z Vji a~, j = l, .. ., d, 

k=l i=1 
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where Stj and Tjk are the entries of unimodular matrices 
S aod T, respectively. So the first three basis vectors 
again describe main reflections. Starting from the basis 
(14) one obtains a lattice ~r,* and matrices 

~ ( R )  0 
F'(R) = (R inK) (15) 

r~(R) ~'(R) 

with 

F Z ( R ) = S l e ( R ) S - ' ,  li'(R)= TFt(R)T- '  (16) 
F~,(R) = TF~,(R) S -1 + VI"~(R) - li t(R) V 

( V :  US-l).  (17) 

Hence lattices 27 and 27' may only belong to the same 
Bravais class if the groups le(K)  and F~(K) and l i (K)  
and F/(K) are arithmetically equivalent. Moreover, 
there has to exist an integral d x 3-dimensional matrix 
V such that (17) is also satisfied. The latter equation, 
actually, can be translated as follows into a condition 
on the matrices a and the corresponding a' .  Equation 
(17) implies for the matrices a and a '  the relation: 

a' = TaS -1 + V. (18) 

The relation between FM, le, F~ and a is 

a l e ( R ) -  F~(R) a = FM(R ), (19) 

as follows from (2) and (3); and correspondingly for 
the primed elements also. This relation puts restrictions 
on the possible matrices a for given Fe(K ) and l i(K),  
because FM(R) is an integral matrix. It can be shown 
that the matrix a can be written as a sum a = a t + a ~, 
where a t satisfies an equation similar to (19), but with 
zero at the right-hand side: 

a t l e ( R ) - l i ( R ) a t = O  (allR in K) (20) 

and where a ~ is a matrix with rational entries. Hence 
the restricting equation (19) becomes 

arl~E(R)  - / I / (R)  O "r=  FM(R ). (21) 

The freedom and the restrictions one has in the 
lattices of a Bravais class for a given M* also apply to 
lattices constructed from different reflection sets M* 
and M*'.  Accordingly we are now in a position to 
formulate criteria for deciding whether two lattices Z' 
and 27' belong to the same Bravais class. 

Consider any two lattices Z and 27' with holohedral 
point groups K and K',  respectively, and their integral 
(faithful) representations F(K)  and F' (K ' ) .  Then the 
two lattices belong to the same Bravais class if and only 
if 

F ' ( K ' ) = A F ( K ) A - ' ,  (22) 

where the (3 + d) x (3 + d)-dimensional matrix A with 
integral entries and determinant _+ 1 has the form 

S 0 
A = . (23) 

U T 

This implies in particular that K and K '  are iso- 
morphic point groups, and can be here identified. 

If the lattices are given by bases a~', q~' of M* and 
'* '* M*',  a t , q) of the ensuing lattices E and 27' are of the 

same Bravais class if there is a basis transformation as 
in (14) such that the set of matrices le(R), l i (R) and 
FM(R) are correspondingly the same for both lattices. 

'* and If the lattices are given by a~' and a, and by a t 
a ' ,  the lattices belong to the same Bravais class i f l e (K)  
is arithmetically equivalent via a matrix S to Fe ' (K ), 
i.e. one can perform a basis transformation with matrix 
S on the basis {a*} such that the (holohedral) point 
groups become of the same form, and furthermore 
there is a matrix T with integral entries such that 

cr' =- T¢7S -1 (modulo integers). (24) 

IV. Notation 

One way to characterize a Bravais class is to give the 
arithmetic crystal class of F(K).  This can be done by 
indicating the arithmetic crystal classes of l e (K)  and 
li(K), their mutual correspondence as pairs appearing 
in F(K),  and a r. Then the Bravais class is given by a 
two-line symbol. The top line indicates the arithmetic 
crystal class of le (K)  in the form of the symbol one 
finds in IT for its associated symmorphic space group. 
The bottom line gives the arithmetic crystal class of 
l i(K), also by its IT symbol. The latter implies a 
restriction to d = 1, 2 and 3. The arrangement of top 
and bottom lines is such that paired elements are one 
above the other. This may require a permutation in the 
elements appearing in the IT symbol. Moreover, if 
R I 4= 1 then necessarily R 4= 1, but if R z = 1 it is also 
possible to have R 4= 1. If R appears as an element of 
the symbol and R I = 1, then a 1 is added corre- 
spondingly in the bottom line. Finally, the matrix a r is 
indicated in the form of a prefix. For d = 1 a systematic 
for this prefix has been developed (cf. Janner, Janssen 
& de Wolff, 1979), but for larger values of d we have 
chosen a simpler system, to avoid a too complicated 
casuistry. Accordingly, P just means: a r = 0, whereas 
the other possible matrices are labeled C~, C2, . . . ,  etc. 
As suggested by the notation the lattices with a C i 
prefix are centerings of the corresponding P ones. 

As an example consider some of the cases in which 
the main reflections form a monoclinic primitive lattice: 

(i) Two of the basic satellites lie in the mirror plane 
z = 0 and a third one lies along the unique axis; then 
the matrix a is identical with a i and 

o = 2  g O. 

0 0 0 

(25) 
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Since all elements of 2/m leave M* invariant: K = 2/m. 
Also from (6) it follows for this case that K~ = 2/m and 
that the four elements of the (3 + 3)-dimensional point 
group are: (1,1), (2,2), (m,m) and ( - 1 , - 1 ) .  Finally, 
o "r = o" - tr i = 0. Hence the two-line symbol is: 

p P 2 / m  
P 2 / m  " 

(ii) Two of the basic satellites lie along the unique 
axis and a third one in the mirror plane. Again, K = K E 
= 2/m and K I = 2/m. However, now the four elements 
of the (3 + 3)-dimensional point group are: (1,1), (2,m), 
(m,2) and ( - 1 , - 1 ) .  The corresponding symbol is 

p e  2 / m  
Pro~ 2 • 

(iii) A non-vanishing a r is obtained if one basic 
satellite lies in the mirror plane at z = ½, one in the 
mirror plane at z = 0 and a third along the unique axis. 
Then 

a # 0 o o ½ 

a i = 2  ~ 0 a '=O 0 O. 

0 0 0 0 0 0 

In this case the elements of K are, as in the first one: 
(1,1), (2,2), (m,m) and ( - 1 , - 1 ) ,  but since a r :/: 0, the 
symbol for this third case is 

C P 2 / m  
1 P 2 / m "  

Another notation for the classes of Bravais lattices, 
which is more compact and can be used for d > 3 also, 
is based on the fact that the lattice ~r is given once one 
knows the vectors a* and q*. The arithmetic crystal 
class of Fe(K) is again indicated by its IT symbol. The 
additional required information can, for example, be 
given by indicating the components of the vectors q* 
with respect to the basis adopted in IT for FE(K): in 
other words one gives in this way the matrix a. 
However, this information is, in general, redundant. 
Because of (6) the vectors q* are transformed among 
each other (up to vectors of A*) by the elements of K. 
This means that there are vectors Q* . . . .  , Q* such that 
the set of vectors R Q* for all R of K and i = 1 . . . . .  p, 
generate together with a*, a* and a~ the set M* of all 
reflections. In the worst case p = d, but usually p may 
take a much smaller value. In particular it may happen 
that p = 1: there are just one single vector Q* and d 
elements Rj of K such that: 

q* - Ry Q* (up to vectors of A*), j = 1 . . . .  , d. (26) 

A Bravais class for which this choice is possible is 
called an elementary Bravais class. In the language of 
solid-state theory one says that all basic satellites (i.e. 
all modulation wave vectors) q* belong to one star 
of K. 

In a non-elementary (3 + d)-dimensional Bravais 
class the vectors Q* can be chosen among the vectors 
of different stars. In that case next to the arithmetic 

crystal class of Fe(K), it is sufficient to give the 
components of the Q* (k = 1, . . . ,  p) with respect to 
the basis adopted in IT. The symbol is then of the form 
Fe(K) (Q*, .... Q*), and can be more convenient than 
the two-line symbol. 

As an example we consider the case that a*, a 2, a* 
span a primitive tetragonal lattice. Suppose d = 2 and 
q* = aa~ + fla~ : (a, fl, O); q~ = - - f l a *  + cta~ : 
(-fl,~,0). The subgroup of the holohedral point group 
4/mmm of A* which leaves M* invariant is K -- 4/m. 
This group is generated by the fourfold rotation R~ and 
the mirror R 2 perpendicular to the z axis. Then 

0 - 1  0 
0 - 1  

F e ( R 1 ) :  1 0 0 F~(R~): 
1 0 

0 0 1 

1 0 0 
1 0 

~ ( R 2 )  = 0 1 0 F~(R2)-- 
0 1" 

0 0 - 1  

Hence the arithmetic crystal class of Fe(K) is P4/m 
and that of F/(K) is p4. Since a r -- 0 the two-line 
symbol is 

e~'4/m 
p 4  1 " 

The symbol '1' in the bottom line has been added in 
order to indicate that R 2 has the identity as internal 
rotation. Now q* is the transform of q* under R 1. 
Accordingly we can take Q* = q*. Therefore q* = Q*, 
q~' = R 1 Q* and the one-line symbol is P4/m (a,fl,0). 

V. Derivation and tables 

For the dimensions d _< 3 the arithmetic crystal classes 
can be found in IT. To get the (3 + d)-dimensional 
holohedral point groups it is sufficient to consider the 
three-dimensional point groups K which contain the 
total inversion --1. For each of the corresponding 
arithmetic point groups Fr(K), one considers d- 
dimensional arithmetic point groups F~(K) which are 
homomorphic images of K (and thus of Fr(K), also). 
One then takes the corresponding set of pairs {Fr(R), 
F/(R), R in K }. For each pair of this set (20) allows us 
to derive the restrictions imposed on the admitted 
matrices # :  one then keeps the most general form. The 
matrices o '  are representatives of the class of solutions 
of 

aFE(R) - F/(R) a - 0 (modulo integers), (27) 

modulo the general solution of (20) considered above. 
For each group F(K) given in terms of one pair FE(K), 
F~(K) one finds in this way one a i and one or more 
matrices a r. The equivalent o = # + a" among these 
are found using (24). Finally, one eliminates those o not 
satisfying the rational independence condition stated in 
§2. 
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As an example we consider the case: K = 2/m, 
Fe(K) = P2/m and F~(K) = P2/m. There are two 
alternative pairings: 2 with 2, or 2 with m. In the first 
case 

- 1  0 0 

F~(R~)-- 0 --1 0=F~(RI).  

0 0 1 

The corresponding solution of (20) is 

a /~ o 

a t = 2  /z 0. 

0 0 0 
Putting 

0 0 y 

o r : 0  0 V 

£ ~/ 0 

the solutions of (27) satisfy the set of equations 

2y--O, 2v--0 ,  2~--0,  2r / - -0  

(modulo integers). 

Since the coefficients of a r are determined up to 
integers (cf. equation 24), there are 24 -- 16 solutions. 
Applying again (24), one finds that there are four 
inequivalent solutions to a r (see the Appendix): 

0 0 0 0 0 ½ 0 0 

0 0 0 0 0 0 0 0 

0 0 0 o 0 0 ½ 0 

These give rise to the following four 

e P2/m p P2/m I"' p2 /m  
P2/m ~" l p 2 / m  "~2P2/m 

which can be found in Table 1 (c). 

o o o ½  

0 0 0 O. 

o ½ o o  

Bravais classes: 

C P2/m 
3P2/m 

Once one has determined all non-equivalent matrices 
a for all groups F(K) -- {FE(K),FI(K)} , one has to 
eliminate those cases which are not holohedral point 
groups for the lattices they leave invariant. If one finds 
for F(K) the same (or equivalent) a as for I'(K') with 
K a subgroup of K' ,  then one deletes the first case. 

In this way we have determined all (3 + d)- 
dimensional Bravais classes for d _< 3. They are 
indicated in Table 1 by their one-line symbol. The 
corresponding two-line symbol can easily be construc- 
ted. The top line designates Fe(K), present in the 
one-line symbol as well. The bottom line is given in the 
third column. The prefix is P for the first Bravais class 
given F(K) and a r = 0, it is C~ for the second, if 
present, and so on. For d = 1 the prefix is explicitly 
given with the convention adopted by Janner, Janssen 
& de Wolff (1979). 

In Table 2 one finds how many (3 + d)-dimensional 
Bravais classes there are for each of the three- 

dimensional crystallographic systems, as far as has 
been worked out in the present approach. 

VI. Arithmetic crystal classes and superspace groups 

The Bravais classes discussed above characterize the 
lattices appearing in superspace groups which describe 
the symmetry of incommensurate crystal phases. Each 
Bravais class corresponds to the arithmetic crystal 
class of the holohedral point group. The other 
arithmetic crystal classes can be found as non- 
equivalent subgroups of the former ones. For these 
arithmetic crystal classes one can use the same one- or 
two-line symbol as for the Bravais class. One simply 
indicates the occurring point group instead of the 
holohedral one. 

As an example consider the Bravais class 

P2/m(a, fl, y)= l~P2 /m  - - c  m m "  

The holohedral point group is of order four and has 
three subgroups of order two: P2(a, fl, y), Pm(a, fl, y), 
Pi(a,/~q). The last one is the holohedral point group of 
another Bravais class. Hence the three arithmetic 
crystal classes belonging to the Bravais class con- 
sidered are P2/m(~fl, y), P2(a, fl, y), and Pm(a,flq), or, 
in their two-line symbols, 

p l ' 2 / m  p 2  Pm cmm Pcm Pcm. 

We have not undertaken the job of determining all 
arithmetic point groups having the Bravais classes 
derived here. Neither did we derive a corresponding full 
list of superspace groups; this latter would be pro- 
hibitively long. In particular cases, however, one can 
for a given arithmetic point group determine all 
superspace groups following the algorithm discussed in 
Janssen, Janner & Ascher (1969) and Fast & Janssen 
(1968, 1971). 

As an example we consider the arithmetic point 
group P432(a,0,0), which is a subgroup of the 
holohedral group Pm3m(a,O,O). According to Table 1, 
d = 3. For a suitable choice of basis the components of 
the matrix a are 

a 0 0 

a = 0  a 0 .  

0 0 a 

Using (16) one can determine FI(4 ) and F~(3) which are 
equal to Fe(4 ) and Fe(3), respectively. Then one knows 
the generators F(4) and F(3) of the point group 
expressed as 6 x 6-dimensional matrices. According to 
Janssen, Janner & Ascher (1969) and Fast & Janssen 
(1968, 1971) one has to construct 

4 3 

N~= Y r(4) k, N ~ :  Y r(3) k, 
k = l  k = l  

N ~ =  1 + F(4)r(3), z ~ =  N~F(4), 
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Table 1. Bravais classes for incommensurate crystal phases with internal dimension d = 1, 2 or 3 
F i r s t  c o l u m n :  n u m b e r  o f  the  Brava i s  c lass ;  s e c o n d  c o l u m n :  one- l ine  s y m b o l ;  th i rd  c o l u m n :  b o t t o m  line for  the  two- l ine  s y m b o l .  T h e  two-  

line s y m b o l  has  the  first p a r t  o f  the  one- l ine  s y m b o l  as  t op  line, the  given b o t t o m  line and  a prefix.  F o r  d = 1 this prefix is given,  for  d = 2 

and  3 it is P for  the  first  B rava i s  c lass  wi th  given t o p  a n d  b o t t o m  line and  C1, C~ . . . .  for  the  fo l lowing  ones .  

(a) Bravais classes d = 1 

Triclinic Orthorhombic Tetragonal 
1 P [(ct,Sy) i P 9 Pmram(00y) 11 [ P 19 P4/ramm(OOy) 

Monoclinic 10 Pramra(O½Y) 11 i B 20 P4]rnmm(,~y) 
2 P2]rn(aflO) il P 11 Praram(~y) l l i  W 21 14/mmrn(OOy) 
3 P2/ra(afl½) [ 1 C 12 Imram(OOy) I 1 [ P Trigon_al 
4 B2]m(ctflO) il P 13 Cmmra(OOy) l l i  P 22 R3m(00y) 
5 P2/ra(OOy) li P 14 Cramra(lOy) l l i  L 23 P:31m(½-.]y) 
6 P2]m(½OY) I i A 15 Ammra(OOy) 111 P Hexagonal 
7 B2/ra(OOy) ! 1 P 16 Ammra(½07) 11 i A 24 P6/rnmm(OOy) 
8 B2/ra(0½?) I i B 17 Frarara(O0y) 11 i P 

18 Frarara( lO)') 11 i L 

(b) Bravais classes d = 2 

Trielinic 29 Pmmm(O~O,OOv) 
I P i(ctfly,2ltv) p2 30 Pmmm(½flO,OOv) 

Monoclinie 31 Pramm(Ofl½,0Ov) 
2 P2/m(ctflO,2gO) p21 32 Pramm(½fl½,0Ov) 
3 P2/ra(r~fl½,21~O) p21 33 Pmmm(½flO,½Ov) 
4 B2/ra(aflO,AgO) p21 34 Pmmm(½flO,O½v) 
5 P2/ra(OOT,0Ov) pl2 35 Pmram(Ofl½,0½v) 
6 P2/m(½Oy, OOv) pl2 36 Pmmra(½fl½,½Ov) 
7 P2/ra(½Oy, O½v) p12 37 Pmram(½fl½,0½v) 

Pmmm ( ~fll, ~v) 8 B2/ra(OOT,0Ov) pl2 38 t ~ t~ 
9 B2/m(O½7,0Ov) p12 39 Iramm(OflO,OOv) 

l0 P2/m(aflO,OOv) prara 40 Cmrara(OflO,OOv) 
11 P2/m(afl½,0Ov) prom 41 Cmram(Ofl½,0Ov) 
12 P2/m(aflO,½Ov) pmra 42 Cmrara(OflO, lOv) 
13 P2/m(afl½,½Ov) pmra 43 Cmmrn(Ofl½,1Ov) 
14 B2/m(ttflO,OOv) pmm 44 Ammm(OflO,OOv) 
15 B2/m(aflO,O½v) pmm 45 Amram(½flO,OOv) 
16 P2/m(aflT) cram 46 Amram( ½flO,½Ov) 
17 B2/ra(r~flT) cram 47 Fraram(OflO,OOv) 
Orthorhombie 48 Fraram(lflO,OOv) 
18 Pramm(OOT,0Ov) p112 49 Frarnm(lflO, lOv) 
19 Pmram(O½Y,OOv) p 112 50 Pmmm(Ofly) 
20 Pmrara(½½Y, OOv) p112 51 Pmmm(½fly) 
21 Pmram(½Oy, O½v) p112 52 Imrara(Ofly) 
22 Irarara(OOy, OOv) p112 53 Cmmm(Ofly) 
23 Cmmrn(OOT,0Ov) p112 54 Amram(Ofly) 
24 Cmmra(lOy, OOv) p112 55 Ammm(½fly) 
25 Ammra(OOy, OOv) pl12 56 Frarnra(Ofly) 
26 Ammm(½Oy, OOv) p112 
27 Fmmm(OOy,OOv) p112 
28 Fmmm(lOy, OOv) p112 

I mm Tetragonal 
91ram 57 P4/m(et~O) 
91mm 58 P4/m(afl½) 
Mrnm 59 14/m(a~O) 
91ram 60 P4/mmra(OOy, OOv) 
9 lmm 61 P4/mmm(~y, OOv) 
91ram 62 14/rnmra(OOy, OOv) 
91ram 63 P4/mram(aO0) 
91mrn 64 P4/mmm(a½0) 
9 lram 65 P4/mmm(tx0½) 
91turn 66 Pd /raram( eL~) 
9lram 67 14/mrhm(aO0) 
91rara 68 P4/rarhm(aetO) 
91ram 69 P4/rathm(ctet½) 
91ram 70 14/mthm(acLO) 
91ram 71 14/mthm(actl) 
9 lmm Trigonal 
91mm 72 P3_(ctfl~) 
91rnm 73 R 3 (ap0) 
91ram 74 P31m(~7,0Ov) 
9 lmm 75 R 3m(OOT,0Ov) 
clmm 76 P3_ lm(aa½) 
clmra 77 R 3m(aa0) 
clmm 78 P3_m 1 (tt0~) 
clmm 79 R 3ra(a00) 
clmm Hexagonal 
clmm 80 P6/m(aflO) 
c lmm 81 P6/mmm(OOy, OOv) 

82 P6/mmm(aO0) 
83 P6/mmm(aeLO) 

l i l l  P 
l i i 1  W 
1ill P 

i l  P 
i l l  R 

l i l l  P 

p41 
p41 
p41 

p1211 
p1211 
p1211 

p41mm 
p41mm 
p41mm 
p41mm 
p41~m 
p41m~ 
p41m~ 
p41m~ 
p41m~ 

p6 
p6 

p211 
p21 

p61m 
p6~ 
p6ml 
p6m 

p61 
p1211 
p61~m 
p61~m 

(c) Bravais classes d = 3 

Triclinic Orthorhombic 
1 Pi(a#y, tUv, OlO) Pi  30 Pmmra(OOy, OOv, O00) 

Monoclinic 31 Pmmm(O½y, OOv, O00) 
2 P2/m(aflO,AgO,~rlO) e i  I 32 Pmram(~y, OOv, O00) 
3 e2/m(afl½,AgO,~rlO) P i l  33 Pmmm(½Oy, O½v, O00) 
4 B2/m(aflO,~gO,~rlO) P[I 34 Immm(OOy, OOv, O00) 
5 P2/m(OOy, OOv, O00) PI i  35 Cmmm(OOy, OOv,O00) 
6 P2/m(½Oy, OOv, O00) P1 [ 36 Cmmm(lOy, OOv, O00) 
7 P2/rn(½Oy, O½v, O00) Pl i 37 Amram(OOy, OOv, O00) 
8 P2/m(½Oy, O½v,½00) P1 [ 38 Ammm(½Oy,OOv, O00) 
9 B2/m(OOy, OOv, O00) PI I 39 Fmmm(OOy, OOv, O00) 

I0 B 2/m(O½ y, OOv,O00) PI i 40 Fmmm( l Oy, OOv, O00) 
11 P2/m(ctflO,AizO,O00) P2/m 41 Pmmm(OflO,OOv, O00) 
12 e 2/m( afl ½,2t~O,O0~ P 2/m 42 Pmmm( ½flO,OOv,O00) 
13 F2/m( aflO,2gO,~O0) P2/m 43 Pmmm(O fl½,0Ov, O00) 
14 P2/m(ctfl]).#O,½00) P2/ra 44 Pramm(OflO,½Ov, O00) 
15 B2/ra(ctflO,AgO,O00) P2/m 45 Pmmm(OflO,O½v, O00) 
16 B2/m(aflO,2gO,0½0) P2/m 46 Pmmm(½fl½,0Ov, O00) 
17 P2/ra(ctflO,;q~v) A 2/ra 47 Pmram( ½flO,½Ov, O00) 
18 P2/m (afl½,2g v) A 2/m 48 Pmmrn (½flO,O½v, O00) 
19 B2/m(ctflO,~gv) A2/m 49 Pmram(Ofl½,½Ov, O00) 
20 P2/m(aflO,OOv,O06~ Pro~2 50 Pmmm(Ofl½,0½v, O00) 
21 P2/m(a~½,0Ov, O00) Pro~2 51 Pramra(O~O,~v, O00) 
22 P2/m(aflO,½Ov, O0~ Pra/2 52 Pmmm(OflO,O½v,½00) 
23 P2/m(afl½,½Ov,O00) Pro~2 53 Pmmm(½t~,~v,O00) 
24 B2/m(aflO,OOv, O00) Pro~2 54 Prararn(½fl½,0½v,O00) 
25 B2/m(aflO,O½v, O00) Pro~2 55 Pmram(½flO,~v, O00) 
26 P2/m(afly, OOv) Cm/2 56 Pmmm(½flO,O½v,½00) 
27 P2/m(aflY,½Ov) Cm/2 57 Pmmm(Ofl½,~v,O00) 
28 B2/ra(r~flT,0Ov) Cra/2 58 Pmram(Ofl½,0½v,½00) 
29 B2/ra(aflY, O½v) Cra/2 59 Pmmm(½fl½,~v, O00) 

PI1 
- 

p l l  
. 

PI1 
- 

PI1 
- 

P l l  
P l l  

- 

P I I  
- 

PII  
- 

PII  
- 

p l l  
- 

p l l  
Plm/2 
Plm/2 
Plm/2 
Plra/2 
Plm/2 
Plra/2 
Plra/2 
Plm/2 
Plra/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plra/2 
Plm/2 

60 Pmmm(½fl½,0½v,~O0) 
61 lmmm(OflO,OOv, O00) 
62 Cmmm(OpO,OOv, O00) 
63 Cramra(O~½,0Ov, O00) 
64 Cmram(OflO, l Ov, OOO) 
65 Cmmm(Ofl½,1Ov,O00) 
66 Bmmra(OflO,OOv, O00) 
67 Bmmm( l flO,OOv, O00) 
68 Bmmra(OflO,O½v,O00) 
69 Bmmm( lpO,O~v, O00) 
70 Aramra(OflO,OOv,O00) 
71 Amrara( ½flO,OOv, OOO) 
72 Amram(OflO,½Ov, O00) 
73 Ararara(½PO.½Ov, O00) 
74 Fmmm(OflO,OOv,O00) 
75 Fmmm( l flO,OOv, O00) 
76 Fmmra(OflO, lOv, OOO) 
77 Framra(lpO, lOv,O00) 
78 Pramm(OOy,Ogv) 
79 Pramm(½Oy, Ogv) 
80 Pmmm(O½y,Ogv) 
81 Pmmm(OOy,½gv) 
82 Pmmm(½½Y, Ogv) 
83 Pmmm(½OY,½1~v) 
84 Pmrara(O½Y,½gv) 
85 Pmmm(~Y,½#v) 
86 Immm(OOy, Ogv) 
87 Cmmra(OOy, Ogv) 
88 Cmram( lOy, Ogv) 
89 Bramra(OOy, Ogv) 
90 Braram(O½7,01av) 

Plm/2 
Plra/2 
Plm/2 
Plm/2 
Plra/2 
Plm/2 
Plm/2 
Plrn/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plm/2 
Plra/2 
A Ira~2 
A lm/2 
A lra/2 
A lm/2 
A Im/2 
A lm/2 
A lra/2 
A lm/2 
A lm/2 
A lm/2 
A lm/2 
A lra/2 
A lm/2 
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(c) Bravais  classes d = 3 (cont.) T a b l e  1 (cont.) 
Orthorhombic  (cont.) 134 Cmmm(afl½,1Ov) Cmmm 
91 A mmrn(OOy, Olav) A Ira~2 135 Cmmm(O,uv, ctO0) Crnmm 
92 Ammm(½Oy, Ogv) A Ira~2 136 Cmmm(O#v, a0½) Cmmm 
93 Ammm(OOy,½gv) A lm/2 137 Fmmm(a~O,OOv) Cmmm 
94 Ammm(½OY,½1av) A lm/2 138 Fmmm(ctflO, lOv) Cmmm 
95 Fmmm(OOy, O#v) A lm/2 139 Prnmm(Ofly,2Oy) Immm 
96 Fmmm( lOy, Ogv) A lm/2 140 Pmmm(½fl?,ROy) Immm 
97 Pmmm(aOO,OgO,O00) Pmmm 141 Pmmm(½flY,2½y) lmmm 
98 Pmmrn(a½0,OlaO,O00) Pmmm 142 Pmmrn(½flY,2½Y+½) Immm 
99 Pmmm(a½½,01tO,O08) Pmmm 143 lmmm(Ofl?,2Oy) Immm 

100 Pmmm(a~O,½gO,O00) Pmrnm 144 Crnmm(Ofly,2Oy) Irnmm 
101 Pmmm (ct½0,0g½,000) Pmmm 145 Cmmm (Ofly,20?+ 3) Immm 
102 Pmmm(a½0,OlaO,0½0) Pmmm 146 Fmmm(Ofly.2Oy) Immm 
103 Pmmm(ct~,½gO,O00) Pmmm 147 Fmmm(Ofly,2Oy+ l) Immm 
104 Pmmm(a~,Og½,000) Pmmm 148 Pmmm(afly) Fmmm 
105 Pmmm(ct½0,½gO,½0O) Pmmm 149 Immm(ct~y) Fmmm 
106 Pmmm (ct½0,0g½,½00) Pmmm 150 Cmmm (ally) Fmmm 
107 ~ ~ Pmmm ((~,~#~,000) Pmmm 151 Fmmm ((~fly) Fmmm 
108 Pmmm (ab},½g0,½00) Pmmm Tetragonal 
109 Pmmm((~,½gO,0½O) Pmmm 152 P4/m(ctflO,O00) P4/m 

11 1 1 10 Pmmm(ct~,Og~,O~8) Pmmm 153 P4/m(afl½,000) P4/m 
11 Pmmm(ct.~,½g½,½00) Pmmm 154 P4]m(ctflO,½½0) P4/m 
12 Pmmm(~t~,½g½,~O) Pmmm 155 P4/m(e~fl½,½½0) P4/m 
13 Immm (etOO,OgO,O00) Pmmm 156 14/m (ctfl0,000) P4/m 
14 Cmmm(ctOO,OgO,O00) Pmmrn 157 P4/m(otfly) I4/m 
15 Cmmm (a0½,0#O,O00) Pmmm 158 14/m(afly) 14/m 
16 Cmmm(ctOO,OgO,O I O) Pmmm 159 P4/mmm(OOy, OOv, OOg) P1 i 11 
17 Cmmm (a0½,0#½,O00) Pmmm 160 P4/mmm (½½y,00v,000) P 1 i I 1 
18 Cmmm( uO~,OgO,O 1 O) Pmmm 161 I 4 /mmm (00y,00v,000) P 1 i I 1 
19 Cmmm (ct0½,0g½,010) Pmmm 162 P4/mmm (c~O0,O00) P4/mmm 

120 Fmmm(aOO,OlaO,O00) Pmmm 163 P4/mmm(ct½0,O00) P4/mmm 
121 Fmmm (ct01,0/X),000) Pmmm 164 P4/mmm (a0½,000) P4/mmm 
122 Fmmm (e~O 1,0# 1,000) Pmmm 165 P4/mmm (a½½,O0~ P4/mmm 
123 Fmmm (ct01,0/~ 1,010) Pmmm 166 P4/mmm(ctO0,~O) P4/mmm 
124 Pmmm(ctflO,OOv) Cmmm 167 P4/mmm(a½0,½½0) P4/mmm 
125 Pmmm (~t,6½,00v) Cmmm 168 P4/mmm(ct0½,½½0) P4/mmm 

11 11 126 Pmmm(co~O,O½v) Cmmm 169 P.4/mmm(t~,~g) P4/mmm 
127 Pmmm(afl½,0½v) Cmmm 170 14/mmm(etO0,O00) P4/mmm 
128 Pmrnm(ctflO,~v) Cmmm 171 P4/mrhm(ctctO,O00) P4/mriirh 
129 Pmmm(afl½,½½v) Cmmm 172 P4/mrhm(cm ½,000) P4/mriirh 
130 lmmm (a~O,OOv) Cmmm 173 P4/mrhm(ctaO,½½0) P4/mriith 
131 Cmmm(etflO,OOv) Cmmm 174 P4/mrhm(aa ½,½½0) P4/mriith 
132 Cmmm(afl½.0Ov) Cmmm 175 14/rnrhrn(ct~tO,O00) P4/mriirh 
133 Cmmm(ctflO, 10v) Cmmm 176 14/mrhm(ctct 1,000) P4/mriith 

177 P4/mmm(Ofly) 14/mmm 
178 p4/mmm( ½fly) 14/mmm 
179 14/mrnm(Ofly) 14[mmm 
180 P4/mmm(aa?) 14/mriirh 
181 14/mmm(cmy) 14/mriirh 
Trigonal 
182 P3(afl~,O00) P3 
183 P3(apo,~o) P~ 
184 P3(~tfl],~6~ P3 
185 R 3(afl0,000) P3 
186 V3(afly) R3 
187 R3_(afl?) R3 
188 P3 lm(~}y, OOv, O00) P] 11 
189 R3m(OOy, OOv,O00) Pi 1 
190 P3_" I m ( o , 0 0 , ~ v )  P3  lm 
191 P3_m 1 (tt0~,00v) P3rn 1 
192 R 3_m(aOO,OOv) P3rh 
193 P31 m(aa~,OOv) P3 lrh 
194 P3_" Im(aa0,]]v) P3 lrh 
195 P3_lm(ac@]]v) P] lth 
196 R3m(ac~O,OOv) P3rii 
197 P3 Im(aa~,) R31rn 
198 P3m 1 (ct0y) R3rnl 
199 R3m(a0y) R3rn 
Hexagona l  
200 P6/m(afly) P6/m 
201 P6/rnmrn(OOy, OOv,O00) PI f l  1 
202 P6/mmm(cLOy) P6/mmm 
203 P6/mmm(aay) P6/mrfirh 
Cubic  
204 Pm3(u~O) Pm3 
205 Frn3(ctl 0) Pro3 
206 Pm3(½flfl+½) Ira3 
207 Fm3(0flfl+ 1) Im3 
208 Pm3m(aO0) Pm3m 
209 Pm3m(ct½½) Pm3m 
210 Im3m(aO0) Pm3m 
211 Fm3m(aO0) Pm3m 
212 Pm3m(Opfl) Im3m 
213 lm3m(Oflfl) Im3m 
214 Fm3m(Oflfl) Im3m 
215 Prn3m(actct) Fm3m 
216 Im3m(actct) Fm3m 
217 Fm3m(cmct) Fm3m 

Table 2. Number of Bravais classes for the various 
crystal systems for d < 3 

A l l  B r a v a i s  c l a s s e s  E B C ' s  

I n t e r n a l d i m e n s i o n  d 1 2 3 1 2 3 
N u m b e r  o f  s t a r s  p 1 1 2 1 2 3 1 1 1 

System 
Triclinic 1 - 1 - - 
M o n o c l i n i c  7 2 14 - 7 
Or thorhombic  10 7 32 4 43 
Tet ragonal  3 12 3 7 20 
Trigonal  2 6 2 5 11 
Hexagonal  1 3 1 3 - 
Cubic  - 14 - 

1 1 - 
21  7 2 
75 10 7 

3 3 12 
2 2 6 
1 1 3 

- -  

/ / '  v - 0 (modulo integers), 

modulo solutions of H' v = 0. The (sixteen) solutions 
yield to superspace groups with non-primitive trans- 
lations w(4), w(3) from 

w(4) 
Q v =  

w(3) 

4 Among the 16 superspace groups there are only nine 
7 
5 non-isomorphic ones. It follows that the non-primitive 
3 translations associated with the point-group generators 

14 considered above are for these nine superspace groups 
Subtotal  24 30 53 33 81 103 
Total  24 83 217 24 30 33 

and from these the 18 × 12-dimensional matr ix / / :  

No 0 

H =  0 N ~ .  

N,~  Z ,~  

The next step is the computation of  matrices P and Q 
such that / / '  = PI1Q only has diagonal non-zero 
elements. In the present case/ /~1 = / / ~ 2  = 4, whereas 
the other elements are 0 or 1. The superspace groups 
one gets correspond to the solutions of 

given by: 

(1) w(4) = 0, 
(2) w(4) 13 1 = G,~,~,0,0,0) 
(3) w(4) 111  = (~,~,~,0,0,0) 
(4) w(4) 13 1 = (0,0,0,~,~,~) 
(5) w ( 4 ) =  E1 3 1 1  3 1 3  

(6) w ( 4 ) = [ 1  1 1 1 3  1~ 
(7) w(4) 111 = (0,0,0,~,~,0 
(8) w ( 4 ) =  [1 3 1 1 1 1"~ 
(9) w ( 4 ) =  [ 1 1 1 1 1  1~ 

~ , ~ , ~ , ~ , ~ , ~ , ~ 1  

w(3) = 0, 
w(3) = 0, 
w(3) = 0, 
w(3) = 0, 
w(3) = 0, 
w(3) = 0, 
w ( 3 ) = 0 ,  
w ( 3 ) = 0 ,  
w(3) = 0, 

where the non-primitive translations are expressed in 
the standard basis (11) according to the choice of  basis: 
e.g. for group (9) one has w(4) -- ½(a I + . . .  + a6) , etc. 
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These superspace groups can be indicated by the 
following symbols: 

(1) P432(ct,0,0) 
(2) P4,32(a,0,0) 
(3) P4232(a,0,0) 
(4) P432(a,0,0) (4~,0,0) 
(5) P4~32(a,0,0) (4~,0,0) 

(6) P4232(a,0,0) (4,,0,0) 
(7) P432(a,0,0) (42,0,0) 
(8) P4~32(a,0,0) (42,0,0) 
(9) P4232(a,0,0)(42,0,0 ). 

The last parentheses in the symbol contain in- 
dications concerning the internal components of the 
non-primitive translations associated with each of the 
three generators. 

A P P E N D I X  
The non-equivalent solutions o r 

In § 5 one has seen that there are 16 solutions for the 
matrix o r if ~ ( K )  = P2/m = F~(K). Since solutions can 
be added to give new solutions and the matrices are 
only determined up to integers, one can denote them by 
binary numbers. The four fundamental solutions can be 
written as: 

o o o ½ o o o o 

o o o o o o o ½ 
1000 -- , 0 1 0 0  - 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0010 = , 0001 = 

0 0 0 0 0 0 0 0 

1 0 0 0 0 ½ 0 0 

Then the 16 solutions are 0000, 1000, 0100, 1100 . . . .  , 
1111. To determine the equivalent ones one has to 
apply (24) with S and T such that the form of a i 
remains the same. One can formulate this in another 
way: the matrices S and T have to leave FE(K ) and 
F~(K), respectively, invariant [using (16)]. One may 
take S and T matrices from the group generated by 

0 1 0 1 1 0 

M 1= 1 0 0, M 2 = 0  1 0. 

0 0 1 0 0 1 

Table 3. Transformation of  fundamental solutions for  
K e =  K t =  2/m 

a '  to which tr is mapped by S and T (E indicates the unit matrix). 

T S a: 1000 0100 0010 0001 

E M t I000 0100 0001 0010 
E M 2 1000 0100 0011 0001 
M 1 E 0100 1000 0010 0001 
M 2 E 1000 1100 0010 0001 

Table 4. Equivalence relation between the 16 solutions 
for  K~ = K, = 2/m. 

_ ~ - ~ - _ _ - - 

0000 

1000 

0100 

1100 

0010 

1010 

0110 

1110 

0001 

100 

010 

l l0  

001 

101 

011 

111 

A 

B 

x 

x 

B x 

x B 

C 

D x 

x D 

× 

× 

× 

× 

× 

× 

x 

C 

IIII 
I I  
I I  
I I  
HI 
IE 
I I  

x 

× 

D x 

x D 

x 

It is easily verified that M1, M2 leave both point groups 
FE(K) and F~(K) invariant. Application of (24) then 
maps each tr r to a a 'r, the result of which is given in 
Table 3 for the four basic solutions. By linearity then 
the action of M1 and M 2 on all 16 solutions is 
determined. In Table 4 is indicated to which solution 
each of these 16 solutions is mapped by the trans- 
formations indicated in Table 3. It is then easily seen 
what are the equivalence classes. On the diagonal of 
Table 4 it is indicated by a letter to which class a 
solution belongs. Taking one representative from each 
class one obtains the four non-equivalent solutions. 
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